What is Myocardial infarction

Myocardial infarction (MI), commonly known as a heart attack, occurs when blood flow decreases or stops to a part of the heart, causing damage to the heart muscle. The most common symptom is chest pain or discomfort which may travel into the shoulder, arm, back, neck, or jaw. Often it occurs in the center or left side of the chest and lasts for more than a few minutes. The discomfort may occasionally feel like heartburn. Other symptoms may include shortness of breath, nausea, feeling faint, a cold sweat, or feeling tired. About 30% of people have atypical symptoms. Women more often have atypical symptoms than men. Among those over 75 years old, about 5% have had an MI with little or no history of symptoms. An MI may cause heart failure, an irregular heartbeat, cardiogenic shock, or cardiac arrest.

Most MIs occur due to coronary artery disease. Risk factors include high blood pressure, smoking, diabetes, lack of exercise, obesity, high blood cholesterol, poor diet, and excessive alcohol intake, among others. The complete blockage of a coronary artery caused by a rupture of an atherosclerotic plaque is usually the underlying mechanism of an MI. MIs are less commonly caused by coronary artery spasms, which may be due to cocaine, significant emotional stress, and extreme cold, among others. A number of tests are useful to help with diagnosis, including electrocardiograms (ECGs), blood tests, and coronary angiography. An ECG, which is a recording of the heart’s electrical activity, may confirm an ST elevation MI (STEMI) if ST elevation is present. Commonly used blood tests include troponin and less often creatine kinase MB.

Treatment of an MI is time-critical. Aspirin is an appropriate immediate treatment for a suspected MI. Nitroglycerin or opioids may be used to help with chest pain; however, they do not improve overall outcomes. Supplemental oxygen is recommended in those with low oxygen levels or shortness of breath. In a STEMI, treatments attempt to restore blood flow to the heart, and include percutaneous coronary intervention (PCI), where the arteries are pushed open and may be stented, or thrombolysis, where the blockage is removed using medications. People who have a non-ST elevation myocardial infarction (NSTEMI) are often managed with the blood thinner heparin, with the additional use of PCI in those at high risk. In people with blockages of multiple coronary arteries and diabetes, coronary artery bypass surgery (CABG) may be recommended rather than angioplasty. After an MI, lifestyle modifications, along with long term treatment with aspirin, beta blockers, and statins, are typically recommended.

Worldwide, about 15.9 million myocardial infarctions occurred in 2015. More than 3 million people had an ST elevation MI and more than 4 million had an NSTEMI. STEMIs occur about twice as often in men as women. About one million people have an MI each year in the United States. In the developed world the risk of death in those who have had an STEMI is about 10%. Rates of MI for a given age have decreased globally between 1990 and 2010. In 2011, AMI was one of the top five most expensive conditions during inpatient hospitalizations in the US, with a cost of about $11.5 billion for 612,000 hospital stays.

Terminology

Myocardial infarction (MI) refers to tissue death (infarction) of the heart muscle (myocardium). It is a type of acute coronary syndrome, which describes a sudden or short-term change in symptoms related to blood flow to the heart. Unlike other causes of acute coronary syndromes, such as unstable angina, a myocardial infarction occurs when there is cell death, as measured by a blood test for biomarkers (the cardiac protein troponin or the cardiac enzyme CK-MB). When there is evidence of an MI, it may be classified as an ST elevation myocardial infarction (STEMI) or Non-ST elevation myocardial infarction (NSTEMI) based on the results of an ECG.

The phrase “heart attack” is often used non-specifically to refer to a myocardial infarction and to sudden cardiac death. An MI is different from—but can cause—cardiac arrest, where the heart is not contracting at all or so poorly that all vital organs cease to function, thus causing death. It is also distinct from heart failure, in which the pumping action of the heart is impaired. However, an MI may lead to heart failure.

Signs and symptoms

View of the chest with common areas of MI coloured
View of the back with common areas of MI coloured
Areas where pain is experienced in myocardial infarction, showing common (dark red) and less common (light red) areas on the chest and back.

Pain

Chest pain is the most common symptom of acute myocardial infarction and is often described as a sensation of tightness, pressure, or squeezing. Pain radiates most often to the left arm, but may also radiate to the lower jaw, neck, right arm, back, and upper abdomen. The pain most suggestive of an acute MI, with the highest likelihood ratio, is pain radiating to the right arm and shoulder. Similarly, chest pain similar to a previous heart attack is also suggestive. The pain associated with MI is usually diffuse, does not change with position, and lasts for more than 20 minutes.  Levine’s sign, in which a person localizes the chest pain by clenching one or both fists over their sternum, has classically been thought to be predictive of cardiac chest pain, although a prospective observational study showed it had a poor positive predictive value. Pain that responds to nitroglycerin does not indicate the presence or absence of a myocardial infarction.

Other symptoms

Chest pain may be accompanied by sweating, nausea or vomiting, and fainting, and these symptoms may also occur without any pain at all. In women, the most common symptoms of myocardial infarction include shortness of breath, weakness, and fatigue. Shortness of breath is a common, and sometimes the only symptom, occurring when damage to the heart limits the output of the left ventricle, with breathlessness arising either from low oxygen in the blood, or pulmonary edema. Other less common symptoms include weakness, light-headedness, palpitations, and abnormalities in heart rate or blood pressure. These symptoms are likely induced by a massive surge of catecholamines from the sympathetic nervous system, which occurs in response to pain and, where present, low blood pressure. Loss of consciousness due to inadequate blood flow to the brain and cardiogenic shock, and sudden death, frequently due to the development of ventricular fibrillation, can occur in myocardial infarctions.Cardiac arrest, and atypical symptoms such as palpitations, occur more frequently in women, the elderly, those with diabetes, in people who have just had surgery, and in critically ill patients.

“Silent” myocardial infarctions can happen without any symptoms at all. These cases can be discovered later on electrocardiograms, using blood enzyme tests, or at autopsy after a person has died. Such silent myocardial infarctions represent between 22 and 64% of all infarctions, and are more common in the elderly, in those with diabetes mellitus and after heart transplantation. In people with diabetes, differences in pain threshold, autonomic neuropathy, and psychological factors have been cited as possible explanations for the lack of symptoms. In heart transplantation, the donor heart is not fully innervated by the nervous system of the recipient.

Causes

The most prominent risk factors for myocardial infarction are older age, actively smoking, high blood pressure, diabetes mellitus, and total cholesterol and high-density lipoprotein levels. Many risk factors of myocardial infarction are shared with coronary artery disease, the primary cause of myocardial infarction,with other risk factors including male sex, low levels of physical activity, a past family history, obesity, and alcohol use. Risk factors for myocardial disease are often included in risk factor stratification scores, such as the Framingham risk score. At any given age, men are more at risk than women for the development of cardiovascular disease. High levels of blood cholesterol is a known risk factor, particularly high low-density lipoprotein, low high-density lipoprotein, and high triglycerides.

Many risk factors for myocardial infarction are potentially modifiable, with the most important being tobacco smoking (including secondhand smoke).Smoking appears to be the cause of about 36% and obesity the cause of 20% of coronary artery disease. Lack of physical activity has been linked to 7–12% of cases. Less common causes include stress-related causes such as job stress, which accounts for about 3% of cases, and chronic high stress levels.

Diet

There is varying evidence about the importance of saturated fat in the development of myocardial infarctions. Eating polyunsaturated fat instead of saturated fats has been shown in studies to be associated with a decreased risk of myocardial infarction, while other studies find little evidence that reducing dietary saturated fat or increasing polyunsaturated fat intake affects heart attack risk. Dietary cholesterol does not appear to have a significant effect on blood cholesterol and thus recommendations about its consumption may not be needed. Trans fats do appear to increase risk. Acute and prolonged intake of high quantities of alcoholic drinks (3–4 or more) increases the risk of a heart attack.

Genetics

Family history of ischemic heart disease or MI, particularly if one has a male first-degree relative (father, brother) who had a myocardial infarction before age 55 years, or a female first-degree relative (mother, sister) less than age 65 increases a person’s risk of MI.

Genome-wide association studies have found 27 genetic variants that are associated with an increased risk of myocardial infarction. The strongest association of MI has been found with chromosome 9 on the short arm p at locus 21, which contains genes CDKN2A and 2B, although the single nucleotide polymorphisms that are implicated are within a non-coding region. The majority of these variants are in regions that have not been previously implicated in coronary artery disease. The following genes have an association with MI: PCSK9, SORT1, MIA3, WDR12, MRAS, PHACTR1, LPA, TCF21, MTHFDSL, ZC3HC1, CDKN2A, 2B, ABO, PDGF0, APOA5, MNF1ASM283, COL4A1, HHIPC1, SMAD3, ADAMTS7, RAS1, SMG6, SNF8, LDLR, SLC5A3, MRPS6, KCNE2.